A posteriori error estimators for convection-diffusion equations

نویسنده

  • Rüdiger Verfürth
چکیده

We derive a posteriori error estimators for convection-diffusion equations with dominant convection. The estimators yield global upper and local lower bounds on the error measured in the energy norm such that the ratio of the upper and lower bounds only depends on the local meshPeclet number. The estimators are either based on the evaluation of local residuals or on the solution of discrete local Dirichlet or Neumann problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Residual-based a Posteriori Error Estimators for Lowest-order Raviart-thomas Element Approximation to Convection-diffusion-reaction Equations

A new technique of residual-type a posteriori error analysis is developed for the lowestorder Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in twoor three-dimension. Both centered mixed scheme and upwind-weighted mixed scheme are considered. The a posteriori error estimators, derived for the stress variable error plus scalar displacement error in...

متن کامل

Sharp L a Posteriori Error Analysis for Nonlinear Convection-diffusion Problems

We derive sharp L∞(L1) a posteriori error estimates for initial boundary value problems of nonlinear convection-diffusion equations of the form ∂u ∂t + div f(u)−∆A(u) = g under the nondegeneracy assumption A′(s) > 0 for any s ∈ R. The problem displays both parabolic and hyperbolic behavior in a way that depends on the solution itself. It is discretized implicitly in time via the method of chara...

متن کامل

Sharp L1 a posteriori error analysis for nonlinear convection-diffusion problems

We derive sharp L∞(L1) a posteriori error estimates for initial boundary value problems of nonlinear convection-diffusion equations of the form ∂u ∂t + div f(u)−∆A(u) = g under the nondegeneracy assumption A′(s) > 0 for any s ∈ R. The problem displays both parabolic and hyperbolic behavior in a way that depends on the solution itself. It is discretized implicitly in time via the method of chara...

متن کامل

A numerical study of a posteriori error estimators for convection±diusion equations

This paper presents a numerical study of a posteriori error estimators for convection±di€usion equations. The study involves the gradient indicator, an a posteriori error estimator which is based on gradient recovery, three residual-based error estimators for di€erent norms, and two error estimators which are de®ned by solutions of local Neumann problems. They are compared with respect to the r...

متن کامل

Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations

We analyze a posteriori error estimators for finite element discretizations of convec-tion-dominated stationary convection-diffusion equations using locally refined, isotropic meshes. The estimators are based on either the evaluation of local residuals or the solution of discrete local problems with Dirichlet or Neumann boundary conditions. All estimators yield global upper and lower bounds for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 80  شماره 

صفحات  -

تاریخ انتشار 1998